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Autocorrelation times for thermodynamic quantities at T c are calculated from 
Monte Carlo simulations of the site-diluted simple cubic Ising model, using the 
Swendsen-Wang and Wolff cluster algorithms. Our results show that for these 
algorithms the autocorrelation times decrease when reducing the concentration 
of magnetic sites from 100% down to 40%. This is of crucial importance when 
estimating static properties of the model, since the variances of these estimators 
increase with autocorrelation time. The dynamical critical exponents are 
calculated for both algorithms, observing pronounced finite-size effects in the 
energy autocorrelation data for the algorithm of Wolff. We conclude that, when 
applied to the dilute Ising model, cluster algorithms become even more effective 
than local algorithms, for which increasing autocorrelation times are expected. 

KEY WORDS: Critical phenomena; Swendsen-Wang algorithm; Wolff 
algorithm; critical slowing down; time series analysis, Monte Carlo error 
estimation. 

1. I N T R O D U C T I O N  

In recent years, further progress has been made in the field of Monte Carlo 
simulations of the Ising model with the invention of new and more effective 
algorithms, initiated by the work of Swendsen and Wang (l~ in 1987. 
A variant of that method was introduced by Wolff (2~ which has proved to 
be even more effective at criticality. (2'3) The main advantage of these algo- 
rithms is to reduce autocorrelations between successive measurements in 
the simulation process. This has the important consequence of reducing 
critical slowing down ( C A D )  (4) and so simplifying the simulation of larger 
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lattices and smaller distances from the critical point. These aspects, caused 
by the nonlocal type of the Monte Carlo update scheme, were investigated 
by a variety of authors. (5 10) General reviews of attempts to reduce CSD 
are given by Wolff ~11) and Sokal, (12) and cluster algorithms are discussed in 
the review of Wang and Swendsen (13) and references therein. 

In this paper, we report the results of extensive simulations of the site- 
diluted simple cubic Ising model at concentrations p = 1.0, 0.8, 0.6, and 0.4. 
Lattices of linear dimension L ranging from 10 to 60 were simulated by the 
Swendsen-Wang algorithm, whereas system sizes up to L = 75 were used 
for the Wolff algorithm in order to investigate the strong finite-size effects 
observed in this case. The raw data recorded during the simulation are 
described in Section 2, together with some basic statistical prerequisites and 
the definition of autocorrelation times used here. Section 3 provides a 
survey of scaling theory and introduces the dynamical critical exponent z 
related to the system size dependence of autocorrelation times at criticality. 
Details of the simulations, the analyzing methods, and the final results are 
presented in Section 4. In Section 5, the performance of cluster algorithms 
is compared to local Monte Carlo algorithms. Section 6 concludes the 
article by summarizing the main results and outlining open problems. 

2. STATISTICAL M E T H O D S  

The energy U and the absolute value of magnetization IM[ were 
measured during the simulation, recording one value for each Monte Carlo 
step per site (MCS) in the case of Swendsen-Wang and three to four values 
per MCS for Wolff dynamics, depending on the average size of the Wolff 
clusters. The time needed to flip these clusters is proportional to their mass, 
so the natural unit of time varies with the Wolff cluster size. 

Both algorithms fulfill the detailed balance criterion, (1'2) so after 
equilibration the process {Ai} with A ~ { U, ]ML } should be stationary and 
simulate the canonical probability distribution. Observables distributed 
according to this probability are estimated from the simulated time series 
A1 . . . . .  A N with large but finite N: The estimator ( A )  of the mean value #A 
is calculated from 

l U 
( A )  = ~  Z Ai (1) 

i = 1  

unbiased and consistent estimator of #,~, in contrast to the This is an 
estimator 

] N- - t  

(CA(t))-- ~ (A,--(A))(Ai+ , - (A) )  (2) 
N - - t  i=  1 
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of the autocovariance function CA(t), which is only asymptotically 
( N ~  oo) unbiased. The bias depends on the ratio of decay time t to 
simulation length N and leads to a slight underestimation of (CA(t)), 
which may be neglected since t/N< 0.001 in this study: the deviations are 
too small to be observed within the resolution of our data. The estimator 
~pA(t)) of the autocorrelation function pA(t) is defined by 

(pA(t)) -- - -  (3) (c~(0)) 

There are different ways to define autocorrelation times: 

1. 
time: 

The statistically relevant quantity is the integrated autocorrelation 

"Cint, A = 1  ~ pA(t)=l-} - ~, pA(t) (4) 
t=  co t = l  

Under fairly general conditions, rint, A may be used to define the equivalent 
number of independent observations in the time series and so to obtain valid 
variances and error bars for the estimator of the mean: the "number 
of observations" has to be divided by 2"tint, A t o  compensate for the 
correlations. 

When estimating rint, A by substituting (pA(t)) for pA(t), the above sum 
has to be truncated. (~4'2) Otherwise the estimator would not be consistent, 
since the statistics are bad for large t. In the present analysis, the sums were 
truncated at the time tma x where {pA(tmax + 1))  gets larger than ~pA(tmax)), 
e.g., where the estimated autocorrelations become nonmonotonic. 3 

2. Exponential autocorrelation times can be introduced by postulat- 
ing a multiexponential form for pA(t). Then r~xp, A is defined to be the 
largest relaxation time in the corresponding sum, e.g., 

~'exp, A = lim - I t l  (5) 
itl ~ ~o in pA(t) 

In this case, rcxp, A can be extracted from standard curve-fitting ~16) of 
(pA(t)) to exponential decay: 

{pA(t)) oc exp(-t/{Vcxp, A)) (large t) (6) 

If the approximation by a single exponential term is valid, both definitions 
give the same result, so rint, A ~ rexp, A- But normally there is more than one 

3 Other methods, such as self-consistent truncation windows (~5) or exponential approximation 
of the remainder, 121 were also considered and gave similar results within error bars. 
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mechanism of decorrelation, so this simple ,exponential form might be 
modified to include a sum of exponentials. Then %xp, a is defined to be the 
relaxation time of the slowest mechanism decorrelating A. With this 
definition, r~xp.A is normally larger than r~nt, A. 

For a more detailed treatment of the estimation techniques sum- 
marized above, we refer to Priestley, (~4) Madras and Sokal, ItS) Sokal, (t2) 
and Wolff. (2) 

3. THE D Y N A M I C A L  CRITICAL EXPONENTS 

In this section, we do not note the explicit dependence on the observ- 
able A and on the definition of autocorrelation times and correlation 
lengths. However, if the correlation function is not a single exponential, 
these differences might lead to different results, e.g., different exponents. 
The index oo is used to indicate the thermodynamic limit L --* oo, and finite 
systems are indicated by their linear dimension L. 

The critical exponen(17) A for the equilibrium relaxation time %0 of the 
physical observable A of interest is defined by the relation 

r ~ ( T )  ~ f ~ .  I~l - ~  (T--, Tc) (7) 

where e= ( T - T c ) / T c  is the relative distance from Tc. Replacing e by 
using the corresponding relation for the correlation length, 

r ~ ~ .  lel v ( T ~  Tc) (8) 

directly leads to the expression 4 defining the dynamical critical exponent z: 

z~(r ~ . ~ ,  z - A / v  (9) 

The dynamical critical exponent z therefore describes the dependence of the 
correlation time z~ on the static correlation length ~ ,  which implicitly 
depends on temperature. Note that using the same relation for T< Tc and 
T> Tc is only valid if a dynamic scaling assumption for the equilibrium 
correlations is made. ~t8) This implies the equivalence of the critical 
exponents above and below Tc. 

In the infinite system, the correlation length r diverges for T ~  Tc. 
For a finite system, ~L is bounded by the linear dimension L. This leads to 
the finite-size-scaling hypothesis for the correlation time, (19/ 

re(T) ~ L  ~/~. ~(sVL) ( T ~  Tc, L ~ oo) (10) 

a In Eq. (9), i ~  also contains constants from (8) and therefore differs from the value defined 
in (7) by a constant. 
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At the critical point, the argument of the finite-size-scaling function f(x) 
vanishes. Since g(0) is a constant independent of L, for not too small L the 
above relation might be interpreted as 

% ( T c )  = g . L  ~ (11) 

From this relation, z can be determined by simulating systems with different 
linear dimensions L at Tc and plotting rL(Tc) as a function of L. 

The theoretical knowledge on these dynamical processes in equilibrium 
is summarized in the remainder of this section. For conventional algo- 
rithms with local dynamics, the dynamical critical exponent for the pure 
Ising model was proven to fulfill the inequality (2~ 

Zlooa~ ~> 7- (12) 
v 

7 is the critical exponent of the susceptibility. In the case of cluster 
algorithms, Li and Sokal (23) obtained a rigorous lower bound 

Zsw~>- (13) 

for the dynamical critical exponent of the SwendsemWang algorithm, 
where a is the critical exponent of the specific heat. Heermann and 
Burkitt (8) found a logarithmic system size dependence of ~ by simulations 
of the pure Ising model in two dimensions. This shows that (13) is an 
equality for d=  2, since ~ = 0 in this case. In the three-dimensional Ising 
model, all known results are larger than the lower bound 7/v ~0.165 given 
by Li and Sokal. Klein et al. (6) argue that the mechanism of domain wall 
diffusion which characterizes the time evolution of local algorithms is 
maintained in the Swendsen-Wang dynamics. Replacing the lattice spacing 
a giving the "size" of elementary spin flips for local algorithms by the 
average cluster size, they obtain the expression 

27 
Zsw = 2 - - -  (14) dmv 

with dm being the dimension of these average (finite) clusters. This 
dimension is not known, but inserting as limiting values the spatial 
dimension d = 3  and the fractal dimension d F = d - ~ / v ~ 2 . 4 8 4  of the 
incipient (infinite) cluster, we obtain the bounds 

0.41 ~< Zsw ~< 0.69 (15) 
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which are consistent with the above rigorous lower bound and almost all 
numerical results. The differences between the cluster algorithms of 
Swendsen-Wang and Wolff are not fully understood, although it seems 
clear (2'3) that the proportionality of the average size of clusters flipped in 
the algorithm of Wolff and the susceptibility is the key to explaining the 
faster decorrelation in this algorithm. However, there exists no theoretical 
argument explaining the influence of dilution on the dynamics of cluster 
algorithms. 

4. N U M E R I C A L  RESULTS 

For each set of parameters, some separate runs were performed, using 
different random number sequences of a shift-register random number 
generator/24) in the pure case and different impurity configurations in the 
diluted cases to obtain independent configurations for each system size: 
For the Swendsen Wang algorithm, 25,000 MCS were done in five and ten 
runs, respectively, runs for pure and diluted systems. Autocorrelation times 
for the Wolff algorithm are smaller, so the length of each run was reduced 
to about 10,000 updates and the number of runs was extended to 10 
(p=100%),  30 (p=80% and p=60%) ,  and 20 (p=40%)  instead. 5 
A total amount of 44,700hr of processor time on a network of T800 
transputers was required to perform these studies. 

From Section 3 it is clear that deviations from the exact transition point 
lead to smaller values of z. Therefore, very good estimates for Tc are needed. 
For the present study, the value Tc(100%)=4.51154 for the pure Ising 
model(25) and the critical temperatures Tc (80 % ) = 3.496, T c (60 % ) = 2.418, 
and Tc(40%)= 1.207 given by Wang and Chowdhury (26/ were used (all 
temperatures in units of J/kB). 

Autocorrelation function estimates (p,~(t)) and autocorrelation time 
estimates (Zint, A) and (rexp.A) were calculated separately for each con- 
figuration. 6 Figure 1 shows typical autocorrelation function estimates for a 
dilute configuration. Averaging (rint,~) over all configurations leads to the 

5 Simulations for p = 40% were stopped after 20 configurations because of the very large 
fluctuations in the data, which are probably due to deviations of the estimate for Tc (40%)  
used from the true value. 

6 The two definitions of autocorrelation times yield different results, as should be expected if 
more than one exponential mode exists. It is obvious from Fig. 1 that more than one 
exponential mode cannot  be extracted reliably. However, both integrated autocorrelation 
times (taking into account all exponential modes) and exponential autocorrelation times 
lead to comparable dynamical exponents within error bars. In the following discussion, only 
integrated autocorrelation times are used, since they have smaller errors and are easier to 
analyze. 
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Fig. 1. Exponential decay of energy (O)  and magnetization ( �9  equilibrium correlations for 
a single configuration at p = 0.6, T =  2.418, and L = 60. 

final estimates [~m~.A] and [ T e x p ,  A ] .  The error bars shown in Fig. 2 and 4 
are standard errors from configuration averaging, denoted by [ . ] .  The 
errors from the time-estimation procedure described in Section 2 are 
neglected, both because they involve four-point correlations, which are 
even harder to estimate by Monte Carlo simulation, and because 
representative investigations of simulations of various lengths showed 
that the influence of configurational fluctuations is much larger than the 
statistical errors of the time-estimation procedure. 

The resulting values for [~mt, A] are used as a starting point to 
estimate the dynamical critical exponents ZA defined in Section 3. Assuming 
the validity of the underlying scaling assumptions, ZA is estimated by 
fitting 1og[~Cint.A] to log L. Figure2 shows the final results for the 
Swendsen-Wang algorithm; numerical values of the estimates for "~A and zA 
are summarized in Table I. Both fA and z~ decrease with dilution; correc- 
tions to finite-size scaling were only visible for p =  1.0 and L ~  10. In 
analyzing the results for the algorithm of Wolff, we found that fits to the 
energy autocorrelation data are strongly influenced by the interval 
[ L m i  n - - L m a x ]  of system sizes used, whereas the results for magnetization 
data are independent of the system sizes within error bars. Figure 3 shows 
this behavior in the case p = 1.0 when varying the smallest system size used. 
Similar results were found for p < 1.0. 

7 For this comparison, additional data from systems of linear dimensions 6 and 8 were 
included. 
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Fig. 2. Finite size scaling plots of configuration-averaged autocorrelation times for the 
Swendsen-Wang algorithm: (a) magnetization, (b) energy. The best fits according to Table I 
are indicated by solid lines. Error bars are from configuration averaging only; see text. 

These findings explain the different values of the dynamical critical 
exponents for p = 1.0 given in the literature: Fitting the data for [L  = 16; 
L = 67], we obtain zLM I = 0.14 + 0.01 and zu = 0.28 _ 0.01. These values are 
exactly the results obtained by Wolff (2) using system sizes from L = 16 to 
L = 6 4 .  Tamayo etal. ~3) used system sizes from L = 4  to L = 4 0  and 
obtained z = 0.44 + 0,1, which is consistent with our result 7 Zu = 0.34 +_ 0.01 
for [L  = 6; L = 38]. We therefore conclude that the large variations of the 
values cited above are caused by these finite-size effects in the energy auto- 
correlation data. Compensating for these effects by including corrections to 
finite-size scaling, (19) 

vL(Tc) = f . L : { 1  + C . L  ~} (16) 
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Table I. Dynamical Critical Exponents z A and Constant Factors ?,4 for 
the Cluster Algorithm of Swendsen and Wang ~ 

P TIMb ZIMI )~ 27v/I QIM[ TU ZU Z 2 QU 

100 % 1.32 _+ 0.02 0.48 _+ 0.01 5.0 0.54 1.42 _+ 0.03 0.49 • 0.02 3.1 0.79 
80% 1.10 • 0.02 0.42 • 0.01 14.1 0.05 1.06_+ 0.03 0.49 _+ 0.02 7.9 0.34 
60 % 0.99 • 0.03 0.35 • 0.02 4.4 0.73 1.19 _+ 0.03 0.34 • 0.02 13.3 0.07 
40 % 0.72 _+ 0.03 0.31 __+ 0.03 14.3 0.05 1.26 • 0.03 0.15 _ 0.02 6.4 0.49 

All results are obtained by fitting the configuration averages of integrated autocorretation 
time estimates to Eq, (I1). The number of system sizes is 8 (L = 13 to L = 60) for p = 1.0 and 
9 (L = 10 to L = 60) for p < 1.0, respectively. Errors are from weighted least-square fits; QA 
is the goodness-of-fit probability. <15) 

was impossible due to the insufficient accuracy of our data. The dotted 
curves in Fig. 4b resulting from these attempts are only intended as guides 
to the eye and should not be taken seriously. In Table II, the results from 
fitting magnetization autocorrelations to (11) are summarized. 

The values obtained for iJMI(P) are decreasing with p, as in the case 
of the Swendsen-Wang algorithm. The dynamical critical exponents ziMl(p) 
for p r  do not depend systematically on p within error bars. The 
unreasonable small value ziMl(40 % ) ~  0.04 is possibly caused by a too big 

~a (/;mis) 

0 . 4 0  ~_l 
L 

0.35 

0.30 L_ 

0 . 2 5  - -  

0.15 

0,10 ~- 

f- 0.05 

0.00 , ~  [ i I I I i k J q I i J t i I i i I i I i i i [ 

1 0  1 5  2 0  2 5  3 0  3 5  

smallest system size Lmi,~ used 

Fig. 3. Corrections to finite-size scaling for the algorithm of Wolff: Shown are estimates of 
zu (100% ) ( 0 )  and ziMl(100% ) ( �9  from least square fits to Eq. (11). The smallest system 
size Lmi n is varied as indicated; Lma x is fixed to the largest system size simulated. 
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Fig. 4. Same as Fig. 2 in the case of the single cluster algorithm of Wolff. Solid curves in (a) 
indicate the best fits as defined by (11) and Table II. Energy autocorrelations for p = 40 % show 
strong fluctuations and are therefore not shown. Dotted curves in (b) are only guides to the eye. 

Table II. Dynamical Critical Exponents ZIM F and 
Constant Factors § for the Single Cluster 

Algorithm of Wolff" 

P ilMI zIMI Z2MI QIMI 

100% 0.64+0.01 0.15_+0.01 18.4 0.24 
80% 0.49 _+ 0.01 0.15 _+ 0.01 16.6 0.34 
60% 0.40_+0.01 0.12+0.01 9.0 0.88 
40 % 0.34 _+ 0.01 0.04 + 0.02 16.0 0.38 

" All 17 system sizes from L = 10 to L = 75 were used for the 
fit to Eq. (11). 
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deviation of the value of Tc(40 %) used from the real critical temperature 
for this concentra t ion and should not  be trusted. Consequently,  the average 

z~c = 0.15 -t- 0.02 (17) 

characterizes the dynamical  critical behavior  of the algori thm of Wolff in 
the concentra t ion range from p = 100% down to 60%. 

5. C O M P A R I S O N  OF A L G O R I T H M S  

The present study was mainly motivated by the "technical" problem of 
checking whether or not  the very fast decorrelat ion for cluster algori thms 
carries over to the dilute Ising model. Our  results show that the efficiency 
of cluster algori thms is even improved with increasing dilution. In this 
section, we give some arguments  which might explain the different influence 
of dilution on local and cluster algorithms. To show up the implications of 
our  findings for practical Monte  Carlo work, we also present a compar ison 
of  timings of a typical implementat ion of  a vectorized local algori thm and 
our  implementat ion of cluster algorithms on a parallel computer.  

5.1. Theoret ical  Considerat ions 

In interpreting the results of Section 4, it should be kept in mind that 
the dynamics of Monte  Carlo simulations of the Ising model  is not  defined 
by some intrinsic physical time evolution, but rather by the transit ion 
matrix of  the underlying Markov  chain. This implies that  details of the 
algori thm have to be considered. 

The following a rgument  might  explain the influence of  dilution on the 
value of rL(Tc(p)): In the domain  wall diffusion picture mentioned in 
Section 3, there are two major  sources for a change of autocorrela t ion 
times with p: the correlation length (giving the typical distance a domain  
wall diffuses for decorrelat ion) and the diffusion constant  (in which 
"speeds" of the elementary steps of the simulation algori thm enter). 

The p dependence of  the correlat ion length and the accompanying  
finite-size effects at Tc(p) are a m o n g  the unsettled problems in understand- 
ing the static behavior  of the dilute Ising model. 8 We clearly cannot  con- 

8 In the limit of weak dilution, new exponents for the dilute Ising model have been calculated: 
v = 0.68, 7 = 1.34, and fl = 0.35 in ref. 27 and v = 0.671, 7 = 1.321, and ~ = 0.348 in ref. 28. The 
second case which has been analytically treated is the percolation point 129'3~ pc~0.3!; 
ref. 30 gives the exponents v ~ 0.872, y = 1.805, and fl = 0.405. All these exponents are larger 
than the corresponding values for the pure model125~: v = 0.630, Y = 1.2410 and/3 = 0.325. For 
intermediate values of p, no analytic theory is known. Monte Carlo simulations up to now 
have not reached the above limiting cases and consequently record a complex mixture from 
influences of probably all three sources (pure Ising, random Ising, and percolation). 
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tribute to these questions on the basis of our results, but we point out that 
changes in the correlation length are uniquely defined by the Ising model 
and so are identical for local and for cluster algorithms. Additionally, the 
correlation length at criticality is bounded by the linear dimension L of the 
system for all concentrations. 9 

The "speed" of different algorithms can be compared as follows: In 
local simulation algorithms, the probability to flip a single spin typically 
depends exponentially on the ratio of the energy difference produced by the 
spin flip and the temperature, so a smaller critical temperature in the dilute 
systems leads to exponentially smaller acceptance rates for energetically 
unfavorable spin flips. The consequences in reducing the temperature are 
opposite for cluster algorithms. The probability to flip a cluster in the 
algorithms of Swendsen-Wang and Wolff is 50 % and 100 %, respectively, 
independent of temperature. The size of clusters is determined by the 
probability of activating bonds which constitute these clusters. (2'3~ This 
bond probability is greater than zero only for bonds between parallel spins, 
in which case it is given by 

Pact = 1--exp , (18) 

with ferromagnetic exchange coupling J >  0 and Boltzmann's constant kB. 
This expression leads to increasing cluster sizes when reducing tem- 
perature, lo 

This argument might explain the autocorrelation time results for fixed 
L presented in Section 4. Our hypothesis of increasing autocorrelation 
times at Tc(p) for local dynamics was supported recently by local Monte 
Carlo simulations/32) The system size dependence of autocorrelation times 
(and the corresponding exponent z) is not explained by this reasoning. The 
above argument only applies to the magnitudes of autocorrelations at fixed 
L, and without precise knowledge of the changes in the static behavior, any 
explanation of the values of z observed could hardly be justified. 

9 However, these bounds might differ by p-dependent factors which are irrelevant for the 
finite-size analysis, but may be important for comparing the amplitudes rL(Tc(p)) for fixed 
L and varying p. 

lo The "thinning" of the lattice is only linear [(1/Tc) dTc(p)/d p ~ 1 in the range of concentra- 
tions used~3~)], whereas the activation probability increases exponentially. The net effect 
should therefore be a larger cluster size. 
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5.2. Comparison of  Implementat ions  

We present a comparison of typical implementations of the algorithms 
considered above in this subsection. 11 The "physical" parameters for the 
comparison are our results for cluster algorithms summarized in Tables I 
and II, and the results of Heuer (32/for local methods. The data in ref. 32 
show that for local algorithms, autocorrelation times and the dynamical 
critical exponent z increase, from ~L(Tc(IOO%))~O.O51L 21~ in the pure 
system to vL(Tc(60 % ) ) ~  0.017L z93 for the dilution p = 0.6. 

The "technical" and strongly implementation-dependent parameter  is 
the speed of the programs in MCS per second. Ref. 32 is based on a vec- 
torized program on Cray Y-MP with 335 x 10 6 MCS per second for p = 1.0 
and 215 x 10 6 MCS per second for p <  1.0, which is one of the fastest 
programs on vector computers. The present study was done on a trans- 
puter array with T800 processors (25 MHz),  with update speeds of roughly 
13.8 x 103 , p  MSC per second and processor for the Swendsen-Wang algo- 
rithm and 12.5 x 103/p MSC per second and processor for the algorithm of 
Wolff. 12 

The number  of effectively uncorrelated measurements per second can 
be calculated with the data mentioned above by the following expression: 

N~fr- MCS(p ,  program) L t3 + ~(p)l ( 1 9 )  
2-~(p) 

Figure 5 shows the results for p = 1.0 and p = 0.6. To demonstrate the 
possibility to increase the performance of parallel computers by adding 
more processors, the results for cluster algorithms are shown as a whole 
region of speeds corresponding to 8 up to 64 transputers. 

Obviously, the simulation speeds for the pure Ising model show that 
fast vectorized local methods have the best performance for linear dimen- 
sions up to L = 60 for p = 1.0. Above L = 60, the algorithm of Wolff 
performs better when run on a sufficiently large transputer network, e.g., a 
64-processor SuperCluster. It is also clear from Fig. 5 that the algorithm of 
Wolff is to be preferred to the Swendsen-Wang algorithm, which is faster 
than local methods only for some L > 200. This is caused by the different 

Jl Because of the following difficulties, only magnetization data are used: Two recent studies 
using local methods 12~,33J both lead to z~2 for the pure Ising model, but energy 
autocorrelation times differ by a factor of three, which is not understood yet. Additionally, 
the energy autocorrelations for the algorithm of Wolff found in the present paper are 
strongly influenced by finite-size effects, as discussed in Section 4. 

12 The increase of performance with dilution is caused by the fact that the single cluster 
construction algorithm mainly operates on occupied sites. 

822/72/'3-4-28 



842 Hennecke and Heyken 

N~///hour 

lO ~ 

(~) 

lO 

1 . . . .  i tj 

. ] .. 

" ::::::i:i:i::i:i:: :i:i::.:.i~ �9 %.~!~i~.~,. 
: : : : : : : : : : : : : : : : : : : : : : : : : : :  ';~ , ~ , ~  

..... ::::i:iliiii!i!i!i!i:i:.::.... ~ 'N~I 

~Q ~o 1oo 200 

l i n e a r  d i m e n s i o n  L 

N , / f / h o u r  

10o t 

1F \ 1  (b) 
i 210 I i i i i , i i i 

l o  Bo l o a  200 

l i n e a r  d i m e n s i o n  L 
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values of z, program speeds for cluster algorithms being of the same order. 
For  the simulations at p = 6 0 % ,  cluster algorithms are definitely faster 
than local methods, even for the (small) system sizes typically studied in 
the past. 

6. C O N C L U S I O N S  

The main result of this study clearly is the fact that for fixed system 
size L, autocorrelation times at Tc(p) are decreasing with dilution. At least 
for the Swendsen-Wang algorithm, the dynamical critical exponent also 
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decreases with increasing dilution. This behavior is contrary to the results 
for local algorithms, as revealed in ref. 32. The practical consequence of 
this phenomenon is that for Monte Carlo simulations of the dilute Ising 
model (or of large pure systems), cluster algorithms are to be preferred to 
vectorized local algorithms, at least if they can be run on scalable parallel 
machines. 

The arguments presented in Section 5 reveal some differences of the 
�9 two types of algorithms and explain the p dependence of autocorrelation 
times at fixed L. To obtain a deeper insight into the underlying 
mechanisms, it is a necessary prerequisite that the static properties of 
the dilute Ising model be much better understood. To answer the open 
questions concerning the dynamical critical exponents, the algorithm of 
Wolff should be run on much larger systems and the dynamic correlation 
function itself requires further investigation. Finally, the fact that z~oca~ 
increases and Zsw decreases with dilution indicates that dynamic univer- 
sality is not completely determined by the static universality class. 

ACKNOWLEDGMENTS 

We would like to thank M. Podgdrny for many useful discussions on 
numerical methods and W. Bathelt for his help with some Fortran 
programs. We also thank H. O. Heuer for discussion and comments on the 
final form of the manuscript, A. Sokal for correspondence, and U. Wolff for 
providing a copy of ref. 11. 

REFERENCES 
1. R. H. Swendsen and J. S. Wang, Nonuniversal critical dynamics in Monte Carlo simula- 

tions, Phys. Rev. Lett. 58:86-88 (1987). 
2. U. Wolff, Comparison between cluster Monte Carlo algorithms in the Ising model, Phys. 

Lett. B 228:379-382 (1989). 
3. P. Tamayo, R. C. Brower, and W. Klein, Single-cluster Monte Carlo dynamics for the 

Ising model, J. Stat. Phys. 58:1083-1094, 60:899 (1990). 
4. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. 

Phys. 49:435-479 (1977). 
5. M. D'Onorio De Meo, D. W. Heermann, and K. Binder, Monte Carlo studies of the Ising 

model phase transition in terms of the percolation transition of physical clusters, J. Star. 
Phys. 60:585-618 (1990). 

6. W. Klein, T. Ray, and P. Tamayo, Scaling ansatz for Swendsen-Wang dynamics, Phys. 
Rev. Lett. 62:163-165 (1989). 

7. J. S. Wang, Critical dynamics of the Swendsen-Wang algorithm in the three-dimensional 
Ising model, Physica A 164:240-244 (1990). 

8. D. W. Heermann and A. N. Burkitt, System size dependence of the autocorrelation time 
for the Swendsen-Wang Ising model, Physica A 162:210-214 (1990). 



844 Hennecke and Heyken 

9. T. S. Ray, P. Tamayo, and W. Klein, Mean-field study of the Swendsen-Wang dynamics, 
Phys. Rev. A 39:5949-5953 (1989). 

10. P. Tamayo and W. Klein, Critical dynamics and global conservation laws, Phys. Rev. Lett. 
63:2757-2759 (1989). 

11. U. Wolff, Critical slowing down, in LATTICE '89 Symposium on Lattice Field Theory, 
Capri, Italy; Bielefeld Preprint BI-TP 89/35 (November 1989). 

12. A. D. Sokal, New numerical algorithms for critical phenomena, in Computer Studies in 
Condensed Matter Physics (Springer, Berlin, 1988), pp. 6-18. 

13. J. S. Wang and R. H. Swendsen, Cluster Monte Carlo algorithms, Physiea A 167:565-579 
(1990). 

14. M. B. Priestley, Spectral Analysis and Time Series (Academic Press, London, 1981 ). 
15. N. Madras and A. D. Sokal, The Pivot algorithm: A highly efficient Monte Carlo method 

for the self-avoiding walk, J. Stat. Phys. 50:109-186 (1988). 
16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in 

C: The Art of Seientific Computing (Cambridge University Press, Cambridge, 1988). 
17. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, 

Oxford, 1971). 
18. A. Hankey and H. E. Stanley, Systematic application of generalized homogeneous func- 

tions to static scaling, dynamic scaling and universality, Phys. Rev. B 6:3515-3542 (1972). 
19. M. N. Barber, Finite-size scaling, in Phase Transitions and Critical Phenomena, Vol. 8 

(Academic Press, London, 1983). 
20. S. Wansleben and D. P. Landau, Dynamical critical exponent of the 3D Ising model, 

J. Appl. Phys. 61:3968-3970 (1987). 
21. S. Wansleben and D. P. Landau, Monte Carlo investigation of critical dynamics in the 3D 

Ising model, Phys. Rev. B 43:6006-6014 (1991). 
22. B. I. Halperin, Rigorous inequalities for the spin-relaxation function in the kinetic Ising 

model, Phys. Rev. B 8:4437-4440 (1973). 
23. X. J. Li and A. D. Sokal, Rigorous lower bound on the dynamic critical exponents of the 

Swendsen-Wang algorithm, Phys. Rev. Lett. 63:827-830 (1989). 
24. S. Kirkpatrick and E. Stoll, A very fast shift-register sequence random number generator, 

J. Computational Phys. 40:517-526 (1981). 
25. J. C. Le Guillou and J. Zinn-Justin, Critical exponents from field theory, Phys. Rev. B 

21:3976-3998 (1980). 
26. J. S. Wang and D. Chowdhury, The critical behaviour of the three-dimensional dilute 

Ising model: Universality and the Harris criterion, J. Phys. (Paris) 50:2905 (1989). 
27. G. Jug, Critical behaviour of disordered spin systems in two and three dimensions, Phys. 

Rev. B 27:609-612 (1983). 
28. I. O. Mayer, Critical exponents of the dilute Ising model from four-loop expansions, 

J. Phys. A 22:2815-2823 (1989). 
29. A. Coniglio, Thermal phase transition of the dilute s-state Potts and n-vector models at 

the percolation threshold, Phys. Rev. Lett. 46:250-253 (1981). 
30. J. Adler, Y. Meir, A. Aharony, and A. B. Harris, Series study of percolation moments in 

general dimension, Phys. Rev. Lett. 46:250-253 (1981). 
31. R. B. Stinchcombe, Dilute magnetism, in Phase Transitions and Critical Phenomena, Vol. 7 

(Academic Press, London, 1983). 
32. H. O. Heuer, Dynamic scaling of disordered Ising systems, Preprint, 25.09.1992. 
33. H. O. Heuer, Critical slowing down in local dynamics simulation, J. Phys. A 

25:L567-L573 (1992). 


